Работаем по всей России
Часы работы: Пн-Пт, 10:00-22:00
+7 ()
Обратный звонок

ГОСТ ISO 22119-2013 Микробиология пищевых продуктов и кормов для животных. Полимеразная цепная реакция (ПЦР) в режиме реального времени для определения патогенных микроорганизмов в пищевых продуктах. Общие требования и определения

Получить консультацию специалиста

Ошибка: Контактная форма не найдена.

Оставляя заявку, вы соглашаетесь с пользовательским соглашением

ГОСТ ISO 22119-2013

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МИКРОБИОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И КОРМОВ ДЛЯ ЖИВОТНЫХ

Полимеразная цепная реакция (ПЦР) в режиме реального времени для определения патогенных микроорганизмов в пищевых продуктах

Общие требования и определения

Microbiology of food and animal feeding stuffs. Real-time polymerase chain reaction (PCR) for the detection of food-borne pathogens. General requirements and definitions

МКС 07.100.30
65.120

67.050

Дата введения 2015-07-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 “Межгосударственная система стандартизации. Основные положения” и ГОСТ 1.2-2009 “Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены”

Сведения о стандарте

1 ПОДГОТОВЛЕН Государственным научным учреждением “Всероссийский научно-исследовательский институт консервной и овощесушильной промышленности” Российской академии сельскохозяйственных наук (ГНУ ВНИИКОП Россельхозакадемии)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (ТК 335)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. N 44-2013)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Молдова

MD

Молдова-Стандарт

Россия

RU

Росстандарт

Узбекистан

UZ

Узстандарт

4 Настоящий стандарт идентичен международному стандарту ISO 22119:2011* Microbiology of food and animal feeding stuffs – Real-time polymerase chain reaction (PCR) for the detection of food-borne pathogens – General requirements and definitions (Микробиология пищевых продуктов и кормов для животных. Полимеразная цепная реакция (ПЦР) в режиме реального времени для определения патогенных микроорганизмов в пищевых продуктах. Общие требования и определения).
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт . – .

Перевод с английского языка (en).

Международный стандарт разработан техническим комитетом CEN/TC 275 “Продовольственные анализы – Горизонтальные методы” совместно с подкомитетом ISO TC 34/SC 9 “Микробиология” технического комитета по стандартизации ISO/TC 34 “Пищевые продукты” Международной организации по стандартизации (ISO).

Официальный экземпляр международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, имеется в Федеральном агентстве по техническому регулированию и метрологии.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия – идентичная (IDT)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 2132-ст межгосударственный стандарт ГОСТ ISO 22119-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 года.

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячном информационном указателе “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Введение

Введение

Полимеразная цепная реакция (ПЦР) показала себя как быстрый, чувствительный и специфичный метод для обнаружения патогенных микроорганизмов в пищевой продукции и кормах для животных. Дальнейшее развитие технологии позволяет обнаруживать специфические ПЦР продукты, образующиеся в процессе амплификации. Принцип основан на возбуждении флуоресцентных маркеров в процессе ПЦР.

1 Область применения

Настоящий стандарт определяет условия для обнаружения патогенных микроорганизмов в пищевых продуктах и полученных из них изолятов с помощью полимеразной цепной реакции (ПЦР). Настоящий стандарт также определяет требования к амплификации и обнаружению последовательности нуклеиновых кислот (ДНК или РНК после обратной транскрипции) при проведении ПЦР в реальном времени.

Минимальные требования, изложенные в настоящем стандарте, являются основой для сопоставления и воспроизведения результатов в отдельных лабораториях и между различными лабораториями.

Настоящий стандарт также применим, например, для обнаружения пищевых патогенных микроорганизмов в пробах окружающей среды и кормов для животных.

Примечание – В связи с быстрым прогрессом в данной области приведенные примеры являются наиболее часто используемыми на момент разработки стандарта.

2 Нормативные ссылки

Следующие ссылочные документы* являются обязательными для применения настоящего стандарта. Для устаревших ссылок применяется только цитируемое издание. Для недатированных ссылок применяется самое последнее издание ссылочного документа (включая поправки).
_______________
* Таблицу соответствия национальных стандартов международным см. по ссылке. – .

ISO 20838 Microbiology of food and animal feeding stuffs – Polymerase chain reaction (PCR) for the detection of food-borne pathogens – Requirements for amplification and detection for qualitative methods (Микробиология пищевых продуктов и кормов для животных – Полимеразная цепная реакция (ПЦР) для обнаружения и количественного учета патогенных микроорганизмов в пищевых продуктах – Требования к амплификации и обнаружению для качественного анализа)

ISO 22174:2005 Microbiology of food and animal feeding stuffs – Polymerase chain reaction (PCR) for the detection of food-borne pathogens – General requirements and definitions (Микробиология пищевых продуктов и кормов для животных – Полимеразная цепная реакция (ПЦР) для обнаружения и количественного учета патогенных микроорганизмов в пищевых продуктах – Общие требования и определения)

3 Термины и определения

В настоящем стандарте применяются следующие термины с соответствующими определениями.

3.1 Полимеразная цепная реакция в режиме реального времени: Ферментативная реакция, сочетающая в себе амплификацию специфичных сегментов ДНК в процессе денатурации, отжиг специфичных праймеров и синтез ДНК с обнаружением специфичных ПЦР продуктов в течение процесса амплификации.

Примечания

1 Как правило, смесь для реакции амплификации содержит одну или несколько проб специфичной ДНК в сочетании с одним или несколькими флуоресцентными красителями. При использовании данной технологии сигнал генерируется после специфичной гибридизации проб с целевой последовательностью нуклеиновых кислот и возбуждения светом определенной длины волны.

2 При проверке положительных результатов в соответствии с ISO 20838 могут использоваться неспецифично связывающиеся с ДНК флуоресцентные красители.

3.2 ПЦР-продукт: Фрагмент ДНК, амплифицированный в ПЦР.

3.3 флуоресцентно-резонансный перенос энергии: (обнаружение патогенов в продуктах питания с помощью ПЦР) зависящая от расстояния передача энергии от молекулы донора к молекуле акцептора, приводящая к повышению флуоресценции молекулы акцептора при возбуждении электромагнитного излучения определенной длины волны.

Примечание – Источник: [2].

3.4 репортер: (обнаружение патогенов в продуктах питания с помощью ПЦР) Флуоресцентные молекулы, использующиеся для обнаружения гибридизации специфических зондов при возбуждении электромагнитного излучения определенной длины волны.

3.5 гаситель: (обнаружение патогенов в продуктах питания с помощью ПЦР) флуоресцентные молекулы, выступающие в качестве акцептора энергии и тем самым гасящие/выключающие флуоресцентный сигнал от репортерного гена (донора).

3.6 темный гаситель: Молекула, выступающая в качестве акцептора, не излучает энергию в спектральном диапазоне, который может быть обнаружен оптической системой обнаружения прибора ПЦР в реальном времени.

3.7 5′-3′-экзонуклеазная активность: Способность фермента, например, полимеразы нуклеиновых кислот, расщеплять гибридизованные молекулы нуклеиновой кислоты в направлении 5′-3′.

Примечание – Активность 5′-3′-экзонуклеазы направлена на двойную скрученную цепь ДНК. Она зависит от типа фермента и может быть представлена, например, Taq-, Tth и TFL-полимеразами.

3.8 флуоресцентный зонд: Олигонуклеотид или аналог олигонуклеотида определенной последовательности в сочетании с одной или несколькими флуоресцентными молекулами.

Примечание – Любая система, излучающая флуоресцирующий сигнал после специфической гибридизации с целевой последовательностью нуклеиновых кислот, может быть использована в качестве флуоресцентного зонда.

3.9 гидролизуемый зонд: Флуоресцентный зонд в сочетании с двумя флуоресцентными молекулами, которые пространственно отделены друг от друга 5′-3′-экзонуклеазной активностью фермента в процессе амплификации.

Примечание – Принцип гидролизуемого зонда изображен на рисунке 1.

Рисунок 1 – Принцип гидролиза зонда

а) Негибридизованный зонд в растворе

б) Расщепление гибридизованного зонда

с) Результат расщепления зонда после возбуждения флуоресценции репортера

Обозначение

1 – ДНК субстрат.

2 – Флуоресцентные молекулы (репортер).

3 – Гасящие молекулы.

4 – Фермент.

Рисунок 1 – Принцип гидролиза зонда

3.10 зонд гибридизации: Система из двух флуоресцентных зондов, каждый из которых связан с одной флуоресцентной молекулой, где одна молекула служит донором, другая акцептором.

Примечание – Принцип гибридизации зонда изображен на рисунке 2.

Рисунок 2 – Принцип гибридизации зонда

а) Негибридизованный зонд в растворе

б) Гибридизация зондов в результате флуоресценции акцептора

Обозначение

1 – ДНК субстрат.

2 – Молекула акцептора.

3 – Молекула донора.

Рисунок 2 – Принцип гибридизации зонда

3.11 молекулярный маяк: Флуоресцентный зонд. состоит из трех частей: центральная часть, комплементарная целевой последовательности нуклеиновой кислоты, а также 5′-части и 3′-части, комплементарные друг другу; репортерный ген прикреплен к одному концу молекулы, в то время как другой конец несет гаситель.

Примечание – Принцип молекулярного маяка изображен на рисунке 3.

Рисунок 3 – Принцип молекулярного маяка

а) Негибридизованный молекулярный маяк в растворе

б) Молекулярный маяк, гибридизованный в результате флуоресценции

Обозначение

1 – ДНК субстрат.

2 – Флуоресцентные молекулы (репортер).

3 – Гасящая молекула.

Рисунок 3 – Принцип молекулярного маяка

3.12 зонд для определения специфичной последовательности ДНК патогенна: Зонд с последовательностью, комплементарной ДНК патогенна, с репортерным геном, излучающим сигнал определенной длины волны, который может быть обнаружен с помощью оптической системы обнаружения.

3.13 зонд для определения внутреннего контроля последовательности нуклеиновых кислот: Зонд с репортерным геном, предназначенный для подтверждения эффективности амплификации.

Примечания

1 Зонд испускает сигнал, явно отличающийся от сигнала зонда, предназначенного для обнаружения специфичного возбудителя.

2 Применение системы внутреннего контроля требует использования приборов, способных регистрировать различные длины волн.

3.14 пассивные ссылки: Флуоресцентные молекулы, присутствующие в реакционной смеси, использующиеся для нормализации сигнала.

Примечание – Это могут быть двойные молекулы нуклеиновой кислоты или другие молекулы, не принимающие участия в реакции.

3.15 базовый уровень обнаружения флуоресценции, “базовая линия”: Точка, в которой реакция достигает интенсивности флуоресценции выше фоновой.

3.16 фоновая флуоресценция, “фон”: Внутренний уровень флуоресценции, достигающийся в результате использования реагентов и расходных материалов.

3.17 пороговый цикл пересечения точки: Точка кривой амплификации, в которой сигнал флуоресценции поднимается выше базового или пересекает предопределенные пороговые значения.

4 Принципы

4.1 Общие положения

ПЦР в режиме реального времени обычно состоит из:

a) амплификации специфической целевой последовательности с помощью ПЦР в присутствии флуоресцентных зондов;

b) связывания флуоресцентных зондов в каждом цикле амплификации;

c) генерации флуоресцентного сигнала при возбуждении во время каждого цикла;

d) контроля флуоресценции сигналов оптической системой обнаружения;

e) анализа данных.

Примечание – Для целей скрининга могут быть использованы флуоресцентные сигналы от красителей, связанных с двойной молекулой ДНК.

4.2 Зонды для ПЦР в режиме реального времени

4.2.1 Гидролизуемые зонды

Зонды гидролиза представляют собой специфические олигонуклеотиды, присутствующие в ПЦР вместе с праймерами для ПЦР. Один конец зонда несет флуоресцентную молекулу репортерного гена со спектром излучения, который гасится второй молекулой, находящейся на другом конце.

Зонд гибридизуется с целевой последовательностью нуклеиновой кислоты. На этапе элонгации цепи ДНК, 5′-3′-экзонуклеазная активность ДНК-полимеразы расщепляет гибридизованный зонд. После расщепления репортерный ген отделяется от гасителя, в результате чего интенсивность флуоресценции репортера увеличивается. Конечный сигнал флуоресценции пропорционален количеству специфичного ПЦР-продукта.

3′-конец зонда должен быть заблокирован, чтобы предотвратить его распространение в ПЦР.

4.2.2 Зонды гибридизации

Два гибридизационных зонда представлены в ПЦР как специфические олигонуклеотиды, связанные с праймерами ПЦР. Эти зонды, каждый из которых содержит флуоресцентные молекулы, одна из которых выступает в качестве донора, другая в качестве акцептора, гибридизуются с целевой последовательностью нуклеиновых кислот. После гибридизации красители оказываются в непосредственной близости так, что при возбуждении происходит флуоресцентно-резонансный перенос энергии, и молекула акцептора генерирует сигнал, который можно обнаружить, конечный сигнал флуоресценции пропорционален количеству специфичного ПЦР-продукта.

3′-конец зонда должен быть заблокирован, чтобы предотвратить его распространение в ПЦР.

4.2.3 Молекулярные маяки

Молекулярные маяки представляют собой специфические олигонуклеотиды, присутствующие в ПЦР вместе с праймерами для ПЦР.

Когда молекулярные маяки связываются с комлементарной целевой последовательностью при определенной температуре гибридизации, они подвергаются конформационной трансформации, которая приводит к разделению ствола. Это приводит к образованию гибрида зонда и мишени, который является более длинным и стабильным, чем ствол. Это в свою очередь приводит к разделению репортерного гена и гасителя, в результате чего репортер генерирует сигнал [3]. Конечный сигнал флуоресценции пропорционален количеству специфичного ПЦР-продукта.

5 Общие требования к лаборатории

Общелабораторные требования должны быть выполнены в соответствии с ISO 22174.

6 Реактивы и материалы

6.1 Общие положения

В ходе анализа, если не указано иное, используют только реагенты, признанные чистыми для анализа, и стерильную дистиллированную или деминерализованную воду или воду эквивалентной чистоты, свободную от нуклеиновых кислот и нуклеаз, подходящие для молекулярного биологического анализа.

Не допускается использование любых реагентов или расходных материалов, например, компонентов обогащенных бульонов, флуоресценция которых интерферирует с системой обнаружения.

Особые требования применяются к реагентам, указанным в пунктах 6.2-6.6.

6.2 ДНК-полимераза и реакционный буфер

6.2.1 ДНК-полимераза

Термостабильная полимераза (возможно, с активностью обратной транскриптазы), используемая для ПЦР. Она должна быть использована в соответствии с указаниями производителя.

Примечание – Она может быть очищенной, в виде нативного фермента, или очищенной, генетически модифицированной рекомбинантной формой фермента.

Если будут использоваться зонды гидролиза, ДНК-полимераза должна обладать 5′-3′-экзонуклеазной активностью. Для анализа РНК требуется смесь обратной транскриптазы и ферментов ДНК-полимеразы или ДНК-полимераза с активностью обратной транскриптазы.

Каждая ДНК-полимераза может требовать различных экспериментальных условий.

6.2.2 Реакционный буфер

Реакционный буфер должен соответствовать требованиям, изложенным в ISO 20838.

6.3 Дезоксирибонуклеотид трифосфаты (dNTPs) для ПЦР

dNTPs должны соответствовать требованиям, изложенным в ISO 20838.

6.4 Праймеры

Праймеры должны соответствовать требованиям, изложенным в ISO 20838.

6.5 Флуоресцентные зонды для обнаружения в режиме реального времени

Олигонуклеотиды должны быть надлежащего качества и должны быть предназначены для обнаружения последовательности, присущей специфическому ПЦР-продукту. Последовательность зонда должна быть высоко комплиментарна целевой последовательности ДНК.

6.6 Внутренний контроль амплификации

Эффективность амплификации тестового образца может быть проверена с помощью фрагмента ДНК контроля, добавленного в ту же реакционную емкость, что и эксрагированная ДНК из тестового образца. Также возможно использовать те же пары праймеров для амплификации фрагмента контрольной ДНК, как и для амплификации целевой ДНК (гомологичный внутренний контроль амплификации) или другую пару праймеров (гетерологичный внутренний контроль амплификации). Система с целевым геном и система с внутренним контролем амплификации должны в результате показать приблизительно равную эффективность амплификации. Концентрация добавленного фрагмента контрольной ДНК должна быть как можно более низкой, чтобы обнаружить даже небольшое ингибирование и в то же время дать статистически воспроизводимый положительный результат. Далее, должно быть установлено, что внутренний контроль амплификации не влияет на уровень обнаружения целевого гена.

Следующие положения снижают риск негативных влияний на уровень обнаружения:

– эффективность амплификации гомологичного внутреннего контроля амплификации несколько ниже, чем целевой ДНК;

– снижение концентрации праймеров для гетерологичного внутреннего контроля амплификации.

Контроль внутренней амплификации может добавляться в образцы на ранней стадии анализа, и, следовательно, в то же время выступать в качестве контроля процедуры экстракции.

6.7 Реагенты для предотвращения механической контаминации

Реагенты для предотвращения механической контаминации должны соответствовать требованиям, изложенным в ISO 20838.

7 Оборудование

7.1 Общие положения

Оборудование должно соответствовать требованиям, изложенным в ISO 22174.

В лаборатории используют оборудование, содержащееся в надлежащем состоянии и подходящее для методов исследования.

7.2 Специальные приборы и оборудование

В дополнение к обычному лабораторному оборудованию, а также оборудованию, указанному в ISO 22174, используют следующие аппараты.

7.2.1 Термоциклер, оснащенный:

a) источником энергии, подходящим для возбуждения флуоресцентных молекул;

b) оптической системой обнаружения для обнаружения флуоресцентных сигналов, генерируемых в процессе ПЦР.

Применение системы внутреннего контроля требует использования инструментов, способных обнаружить сигналы различных длин волн.

7.2.2 Реакционные емкости и крышки или затворы, которые могут многократно нагреваться до температуры 100 °С и охлаждаться до 4 °С без повреждений и не влияющие на сигнал флуоресценции, генерируемый в процессе амплификации.

8 Лабораторная проба

Экстракты, содержащие нуклеиновые кислоты из любой пробы, соответствующего области применения, могут использоваться в качестве лабораторных проб при условии отсутствия видимого ингибирования ПЦР и помех флуоресценции.

9 Процедура

9.1 Пробоподготовка

Экстракция нуклеиновых кислот и/или очистка тестового образца должны осуществляться в соответствии с методом, изложенным в ISO 20837 [1].

В результате, раствор нуклеиновых кислот должен содержать достаточное количество целевой нуклеиновой кислоты достаточно высокого качества так, чтобы для качественного анализа от одного до 10 целевых микроорганизмов или эквивалентов вирусных геномов были определены в тестовой пробе. Обогащение и/или концентрация целевого микроорганизма или вируса обычно требует для качественного анализа небольшое число целевых организмов в тестовой порции.

В результате раствор нуклеиновых кислот должен содержать вещества, которые не ингибируют ПЦР, не создают помех для флуоресценции.

Примечание – Флуоресценция зачастую происходит из окрашенных реакционных емкостей и некоторых ингредиентов обогащенных бульонов.

Количественный анализ требует процедуры подготовки образцов, гарантирующей, что количество нуклеиновых кислот целевых микроорганизмов или вирусов в конечном растворе нуклеиновых кислот высоко воспроизводимое.

9.2 Амплификация

9.2.1 Общие положения

Амплификация специфических нуклеиновых кислот осуществляется in vitro с помощью реакции, катализируемой ДНК-полимеразой в присутствии олигонуклеотидов, праймеров, дезоксинуклеозид трифосфатов и флуоресцентных зондов в определенном буфере реакции.

В дополнение к стандартной ПЦР, при постановке реакционной смеси необходимо избегать использования цветных наконечников и реакционных емкостей. Следует принять меры для предотвращения контаминации частицами пыли вне реакционных сосудов.

Сигнал флуоресцентного зонда контролируется на протяжении всего процесса амплификации.

РНК может быть обнаружена с помощью ПЦР в реальном времени, если последовательность была изначально транскрибирована в комплементарную последовательность ДНК с помощью обратной транскрипции.

9.2.2 Параметры циклеров

9.2.2.1 Зонды гидролиза

В целом, процесс амплификации использует протокол двухступенчатого цикла с денатурацией и комбинированными праймерами и зондами отжига и шагом элонгации. Флуоресцентный сигнал контролируется на протяжении отжига и шага элонгации.

9.2.2.2 Зонды гибридизации

Процесс амплификации использует протокол трехступенчатого цикла с денатурацией, праймерами и зондами отжига и шагом элонгации. Флуоресцентный сигнал контролируется во время отжига.

9.2.2.3 Молекулярные маяки

В целом, процесс амплификации использует протокол трехступенчатого цикла с денатруацией, праймерами и молекулярными маяками отжига и шагом элонгации. Флуоресцентный сигнал контролируется во время отжига.

9.3 Оценка результатов

Оценка результатов испытания – по ISO 22174.

ПЦР в реальном времени позволяет одновременно определить и разделить сигналы специфических патогенов и внутреннего контроля амплификации. Следовательно, рекомендуется использовать внутренний контроль амплификации.

9.4 Анализ данных флуоресценции

9.4.1 Участок амплификации

9.4.1.1 Общие положения

В процессе амплификации количество обнаруживаемых ПЦР-продуктов увеличивается. Увеличение флуоресцентного сигнала связано с увеличением количества ПЦР-продуктов. Это может быть графически изображено на кривой амплификации (см. рисунок 4).

Рисунок 4 – Кривая амплификации

Обозначение

* – число амплифицированных молекул.
___________________

* Обозначение соответствует оригиналу. – .

– число циклов амплификации.

1 – экспоненциальная фаза.

2 – линейная фаза.

3 – фаза плато.

Рисунок 4 – Кривая амплификации

Типичная кривая амплификации состоит из трех этапов, характеризующих процесс ПЦР.

9.4.1.2 Фаза 1: Экспоненциальная фаза

Экспоненциальная фаза представляет собой цикл диапазона высокой точности, который характеризуется высокой и постоянной эффективностью амплификации. Во время экспоненциальной фазы отношение ПЦР-продукта может быть описано уравнением (1):

(1)

где – число амплифицированных молекул;

– начальное число целевых молекул;

– эффективность системы;

– число циклов амплификации.

9.4.1.3 Фаза 2: Линейная фаза

Линейная фаза характеризуется выравниванием эффекта, когда наклон кривой амплификации постоянно уменьшается. В этот момент один или несколько компонентов падают ниже критической концентрации и эффективность амплификации начинает уменьшаться. Фаза называется линейной, так как амплификация приближается к арифметической прогрессии в большей степени, чем к геометрической.

9.4.1.4 Фаза 3: Фаза плато

На плато амплификация ПЦР останавливается, и сигнал остается относительно постоянным [4].

9.4.2 Оценка данных флуоресценции

Положительные образцы генерируют возникновение участка амплификации, по крайней мере, первой фазы типичной кривой амплификации. Кривая амплификации этих образцов пересекает пороговое значение после определенного числа циклов. Образцы с флуоресцентным сигналом выше порогового считаются положительными.

9.4.3 Количественный анализ

9.4.3.1 Общие положения

Количественный анализ определяет флуоресценцию, соответствующую количеству нуклеиновых кислот целевой последовательности, сгенерированную в течение фазы амплификации ПЦР. Это может быть использовано для определения начального количества целевых нуклеиновых кислот в образце-мишени.

Целевые нуклеиновые кислоты количественно учитываются со ссылкой на стандартную кривую.

Другие методы могут быть применены, если была продемонстрирована их точность.

9.4.3.2 Метод стандартной кривой для количественного учета

Любая стабильная и чистая РНК или ДНК с известной концентрацией может быть использована для подготовки стандартной кривой для последовательного разведения. Эффективность амплификации стандартной кривой и целевой нуклеиновой кислоты должны находиться в строгом соответствии. Плазмидная ДНК и транскрибируемая in vitro РНК, как правило, используются для подготовки стандартов.

Целевая концентрация должна попадать в диапазон калибровочной кривой.

Должно быть применено соответствующее число точек калибровки и повторов, охватывающих диапазон количественного учета [например, по крайней мере четыре калибровочные точки с двумя повторами (в общей сложность 4 на 2 значения) или шесть калибровочных точек с одним значением в каждой точке (всего 6 точек)].

10 Оценка и документация

Оценка возможна при условии, что результаты, полученные с контрольной группой, указанной в 9.3, однозначны. Возможные результаты ПЦР приведены в ISO 22174, таблица 2.

Приложение ДА (справочное). Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Приложение ДА
(справочное)

Таблица ДА.1

Обозначение ссылочного международного стандарта

Степень соответствия

Обозначение и наименование соответствующего межгосударственного стандарта

ISO 20838:2006
“Микробиология пищевых продуктов и кормов для животных. Полимеразная цепная реакция для обнаружения патогенных пищевых микроорганизмов. Требования к амплификации и обнаружению для качественного анализа”

*

ISO 22174:2005
“Микробиология пищевых
продуктов и кормов для животных. Полимеразная цепная реакция (ПЦР) для обнаружения патогенных пищевых микроорганизмов. Общие требования и определения”

*

* Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в национальном информационном фонде технических регламентов и стандартов.

Библиография

[1]

ISO 20837

Microbiology of food and animal feeding stuffs – Polymerase chain reaction (PCR) for the detection of food-borne pathogens – Requirements for sample preparation for qualitative detection
(Микробиология пищевых продуктов и кормов для животных. Полимеразная цепная реакция (ПЦР) для обнаружения и количественного учета патогенных микроорганизмов в пищевых продуктах. Требования к подготовке образцов для качественного обнаружения)

[2]

Т. FORSTER Intermolecular energy migration and fluorescence. Ann. Phys. 1948, 2, p.55-75

[3]

S.A. BUSTIN Quantification of mRNA using real-time RT-PCR: Trends and problems. J. Mol. Endocrinol. 2002, 29, p.23-39

[4]

APPLIED BIOSYSTEMS. ABI Prism® 7900HТ Sequence Detection System user’s manual. Applied Biosytems, Foster City, CA, 2001.

_______________
Пример продукта на коммерческой основе. Эта информация приведена для удобства пользователей данного документа и не является одобрением ISO данного продукта.

_______________________________________________________________________________

УДК 579.672:006.354 MКC 07.100.30 IDT
65.120
67.050

Ключевые слова: продукты пищевые, патогенные микроорганизмы, ПЦР в реальном времени, принцип, методика, внутренний контроль амплификации, реактивы, оборудование, чувствительность, флуоресцентный зонд

________________________________________________________________________________

Электронный текст документа
и сверен по:
официальное издание
М.: Стандартинформ, 2014

Выполненные работы

Натуральные чаи «Чайные технологии»
Натуральные чаи «Чайные технологии»
О проекте

Производитель пищевой продукции «Чайные технологии» заключил контракт с федеральной розничной сетью «АЗБУКА ВКУСА» на поставку натуральных чаев.

Под требования заказчика был оформлен следующий комплект документов: технические условия с последующей регистрацией в ФБУ ЦСМ; технологическая инструкция; сертификат соответствия ГОСТ Р сроком на 3 года; декларация соответствия ТР ТС ЕАС сроком на 3 года с внесение в госреестр (Росаккредитация) с протоколами испытаний; Сертификат соответствия ISO 22 000; Разработан и внедрен на производство план ХАССП.

Выдали полный комплект документов, производитель успешно прошел приемку в «АЗБУКЕ ВКУСА». Срок реализации проекта составил 35 дней.

Что сертифицировали

Азбука Вкуса

Кто вёл проект
Дарья Луценко - Специалист по сертификации

Дарья Луценко

Специалист по сертификации

Оборудования для пожаротушения IFEX
Оборудования для пожаротушения IFEX
О проекте

Производитель оборудования для пожаротушения IFEX открыл представительство в России. Заключив договор на сертификацию продукции, организовали выезд экспертов на производство в Германию для выполнения АКТа анализа производства, часть оборудования провели испытания на месте в испытательной лаборатории на производстве, часть продукции доставили в Россию и совместно с МЧС РОССИИ провели полигонные испытания на соответствия требованиям заявленным производителем.

По требованию заказчика был оформлен сертификат соответствия пожарной безопасности сроком на 5 лет с внесением в госреестр (Росаккредитация) и протоколами испытаний, а также переведена и разработана нормативное документация в соответствии с ГОСТ 53291.

Выдали полный комплект документации, а производитель успешно реализовал Госконтракт на поставку оборудования. Срок реализации проекта составил 45 дней.

Что сертифицировали

Международный производитель оборудования
для пожаротушения IFEX

Кто вёл проект
Василий Орлов - Генеральный директор

Василий Орлов

Генеральный директор

Рассчитать стоимость оформления документации

Специалист свяжется с Вами в ближайшее время

Получить консультацию специалиста

Ошибка: Контактная форма не найдена.

Оставляя заявку, вы соглашаетесь с пользовательским соглашением